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Cellular engineering and therapy in combination with cord
blood allografting in pediatric recipients
MS Cairo1,2,3,4,5, N Tarek6, DA Lee6 and C Delaney7

Cord blood (CB) transplantation is an alternate source of human hematopoietic progenitor cells for allogeneic stem cell
transplantation in children and adolescents with both malignant and nonmalignant diseases. Current limitations included delay in
hematopoietic reconstitution, increased incidence of primary graft failure and slow cellular immunoreconstitution. These limitations
lead to a significant increase in primary graft failure, infectious complications and increased transplant-related mortality. There is a
number of experimental approaches currently under investigation including cellular engineering to circumvent these limitations. In
this review, we summarize the recent findings of utilizing ex vivo CB expansion with Notch1 ligand Delta 1, mesenchymal
progenitor cells, the use of human placenta-derived stem cells and CB-derived natural killer cells. Early and preliminary results
suggest some of these experimental cellular strategies may in part ameliorate the incidence of primary graft failure, delays in
hematopoietic reconstitution and/or slowness in cellular immune reconstitution following unrelated CB transplantation.
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INTRODUCTION
We and others have reported the success of unrelated cord blood
transplantation (UCBT) in children with malignant and nonmalig-
nant diseases.1–7 There is a number of advantages of unrelated
cord blood (UCB) versus other unrelated stem cell sources, such as
rapid availability, multiethnic representation, immaturity of T-cell
immunity, decreased severe (Grade III/IV) acute GVHD and
reduced incidence of chronic GVHD.1,2,5 However, there are some
disadvantages of utilizing UCB including slower and delayed
hematopoietic recovery and immune reconstitution, limited cell
dose and higher incidence of graft failure (Table 1).1,2,5 The
probability of neutrophil engraftment following UCBT is signifi-
cantly associated with the pre-thaw total nucleated cell dose
(TNC)/kg dose infused and leukemia-free survival following UCBT
is significantly associated with both TNC/kg and HLA matching.3,8

The TNC count in UCB is highly correlated with the pre-thaw
CD34+ cell content and the CD34+ cell/kg cell dose following UCBT
is significantly associated with overall survival (OS) as we and
others have reported before.9,10

The use of reduced toxicity conditioning before UCBT is
associated with similar rates of neutrophil engraftment and
immune reconstitution but a higher risk of primary graft failure.
Primary graft failure following UCBT, however, is associated with a
significant increase in transplant-related mortality.11,12 Although
initial studies of double UCBT in adults appeared to be
encouraging,13,14 a recent prospective randomized trial of single
versus double UCBT in children with hematological malignancies
demonstrated no improved overall survival and a significant

increase in severe acute GVHD and chronic GVHD in double cord
transplant recipients.15 New approaches are needed to accelerate
the rapidity of neutrophil engraftment, and cellular immune
reconstitution, reduce primary graft failure, decrease transplant-
related mortality and subsequently enhance OS following UCBT.
This report summarizes a few new therapeutic approaches
including ex vivo expansion, using engineered cord blood (CB)
CD34+ cells expressing the Notch ligand Delta 1, co-culture
expansion of mesenchymal progenitor cells (MPC) with CB
progenitor cells, the addition of third party human placenta-
derived stem cells (HPDSCs) with single or double UCBT and the
expansion and utilization of CB-derived natural killer (NK) cells.

EX VIVO EXPANSION OF CB HEMATOPOIETIC AND
PROGENITOR CELLS
The ex vivo expansion of CB-derived hematopoietic stem and
progenitor cells (HSPC) as a strategy to increase the CD34+ cell/kg
dose and enhance the kinetics of engraftment is the furthest
along clinically and under investigation by a number of
investigators (Table 2). Extremely promising results have been
reported by these various investigators, including our own work
(CD) using an engineered form of the Notch ligand Delta 1 for the
ex vivo generation of increased numbers of CB CD34+ HSPC with
the goal of reducing the time to engraftment (Figure 1).
Preliminary results, reported by Delaney et al. demonstrated both
safety and clinical feasibility of this approach as well as a
significant decrease in the time to neutrophil recovery.16 Updated
data (unpublished) from this ongoing study now with 22 patients
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show a median time to neutrophil recovery (ANC⩾ 500) of 11 days
regardless of UCB source following HLA-matched CB units
compared with 25 days in a concurrent institutional cohort of

patients (N= 40) treated with the same conditioning regimen and
a double CB graft. In the partially HLA-matched CB units, the
median time to ANC recovery was 19 days (Table 2). Of note, the
expanded cell graft in this study contributed almost exclusively to
initial myeloid engraftment observed at 1 week, demonstrating an
enhanced capacity of the expanded cells to provide rapid myeloid
recovery. Furthermore, all but two evaluable subjects engrafted
before day 21, independent of whether the expanded cell graft
persisted in vivo. Of note, the unit that was expanded ex vivo
underwent positive selection for CD34+ cells to initiate in culture,
and the negative fraction from this unit was not infused at the
time of transplant. This approach of Notch ligand Delta 1
expression is designed to expand only one UCB unit and not
the other and thereby results in the expansion of hematopoietic
progenitor cells but lymphoid progenitor cells would not be
expected to enhance lymphoid reconstitution. Other approaches
using Notch ligand Delta 4 are being investigated to expand
lymphoid progenitor cells following UCBT.17

As shown in Table 2, there are now quite a few clinical
approaches utilizing different methods for the ex vivo expansion
of CB-derived progenitors, ranging from mesenchymal stem cell
co-cultures to strategies that target molecular pathways involved
in stem cell self-renewal and cell fate. The methods in Table 2 are
all methods that are under clinical investigation and have been
reported as least in preliminary form in abstracts or
publications.16,18,19 Each of these studies involved limited
numbers of patients, but all were conducted in patients under-
going cord blood transplantation for hematologic malignancies.
All methods resulted in an increased absolute number of CD34+

Table 1. Advantages and disadvantages of cord blood and cord blood
transplantation

Advantages of cord blood and cord blood transplantation

Ease and safe procurement
Rapid availability
Decreased viral transmission
Multi-ethnic representation
Enriched HPC
Immaturity of T-cell immunity
Decreased severe AGVHD
Reduced chronic GVHD

Disadvantages of cord blood and cord blood transplantation
Decreased supply
Expensive to develop
Limited cell dose
Genetic/infectious transmission
Higher incidence of graft failure
Delay in hematopoietic recovery
Prolonged immune reconstitution
Lack of available cells for adoptive cellular therapy
Increased infectious morbidity

Abbreviation: AGVHD= acute GVHD; HPC=hematopoietic progenitor cells.

Table 2. Comparison of ex vivo cord blood expansion studies

Group Manipulation N CD34+ cell fold
expansion

CD34+ cell/kg median
(x 106)

Days to ANC 500

Delaney et al.16 FHCRC Notch—fresh 16-day culture 23 178 (14–481) 8.3 (0.9–49) 11 (6–41)
Delaney et al.19 FHCRC Notch—TPD cryopreserved 15 176 (32–748) 6 (3.1–11.6) 19 (9–31)
Shpall and colleagues18 Mesoblast Co-culture MSC 14 days 24 30.1 (0–138) 0.95 (1.60–9.34) 15 (9–42)
Wagner et al.56 Novartis SR1—fresh+T 15 days 9 248 (66–446) 11 (1.4–49) 16 (6–43)
Horwitz et al.53 Gamida cell Nicord—fresh+T 21-day culture 11 72 (16–186) 3.5 (0.9–18.3) 13 (7 26)

Abbreviations: FHCRC= Fred Hutchinson Cancer Research Center; MSC=mesenchymal stem cell; SR1= StemRegenin 1; TPD= third party donor.
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Figure 1. Engineered notch ligands: Translation from bench to bedside. In this cartoon, one UCB is selected for CD34+ cells, the negative
fraction is discarded and the CD34+ cell enriched fraction is expanded by Notch ligand Delta 1 in combination serum-free stem cell factor
(SCF), FLT-3 ligand (FL), TPO, interleukin 6 (IL6) and interleukin 3 (IL3) in fibronection-coated flasks and cultured ex vivo in a biological GMP
product facility for ~ 16 days and then infused with another CBU.
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cells for infusion, to varying degrees, and all reduced the time to
neutrophil recovery. However, the clinical efficacy and feasibility of
these approaches remain ill-defined and will require larger studies.
It is likely that a combination of these approaches will be required
to reach the full potential of CB graft engineering.

CB EXPANSION WITH MPC
Another recent approach has been the use of third party MPC
to enhance engraftment following second party UCBT.18

de Lima et al. demonstrated enhancement of neutrophil and
platelet engraftment following transplants with UCB co-cultured
ex vivo with MPC (Figure 2).18 The co-culture of CB with MPC
significantly increases both the CB TNC and CD34 counts. Both the
increase in TNC/kg and CD34/kg of the final CB unit were
significantly associated with an accelerated time to neutrophil

recovery (Figure 3).18 Shpall et al. is currently investigating in a
randomized study in children and adults with selected hemato-
logical malignancy the time to neutrophil recovery following two
unmanipulated CB units versus one unmanipulated CB unit plus
one partially matched CB unit that was ex vivo expanded with MPC
(CB-AB006; clinicaltrials.gov NCT00498316).

CO-ADMINISTRATION OF CB AND HPDSCS
HPDSCs are largely non-adherent, minimally manipulated cell
products derived from human placental perfusate depleted of
RBCs. The CD34 content is approximately 2–6% and they have low
CD4 and CD8 content, low class I and class II HLA expression and
promote enhanced short-term and long-term engraftment
with UCBT in non-obese diabetic/SCID animal model. Preclinical
studies suggest the HPDSC may potentially facilitate UCBT
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Figure 2. Cumulative incidences of neutrophil engraftment and platelet engraftment.18 A total of 24 patients who received 2 units of cord
blood, 1 of which contained cord blood that was expanded ex vivo in co-cultures with STRO-3+ mesenchymal cells, were compared with 80
control patients who received 2 units of unmanipulated cord blood and whose data were reported to the Center for International Blood and
Marrow Transplant Research (CIBMTR). Controls were matched according to age, diagnosis, intensity of the preparative regimen and
prophylaxis against GVHD. (a) The cumulative incidence of neutrophil recovery. At 26 days, the cumulative incidence was 88% among
recipients of expanded cord blood and 53% among CIBMTR controls (Po0.001). (b) The cumulative incidence of platelet recovery. At 60 days,
the cumulative incidence was 71% among recipients of expanded cord blood and 31% among CIBMTR controls (Po0.001). Data on platelet
engraftment were not available for one CIBMTR control. Ex vivo expansion led to more rapid neutrophil and platelet engraftment and to a
higher proportion of patients with engraftment of both cell types. Used from de Lima et al.18
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engraftment, reduce severe acute GVHD and/or enhance immune
reconstitution. Cairo et al. have initiated a pilot study of adding
universal donor (third party) HPDSCs with either single or double
UCBT following myeloablative or reduced toxicity conditioning in
children and adults with selected malignant and nonmalignant
diseases in a multicenter consortium (IND#14949; NCT 01586455;
Figure 4). Fourteen children and adults have been entered in the
study to date and there have been no adverse effects related to
the HPDSC infusion, all with full engraftment and only 2 out of 14
have developed ⩾Grade II acute GVHD to date.20 Additional
correlative studies that are ongoing include donor chimerism,
immune reconstitution and cellular immune recovery.20
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Figure 3. Correlation of total nucleated cells and CD34+ cells with
neutrophil engraftment.18 In the units of expanded cord blood, the
number of total nucleated cells per kilogram of body weight
(a) correlated with the speed of neutrophil engraftment (Spearman
correlation coefficient, − 0.51; P= 0.004), and the number of −CD34+

cells per kilogram (b) also correlated with the speed of neutrophil
engraftment (Spearman correlation coefficient, − 0.48; P= 0.006).
Used from de Lima et al.18
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Figure 4. Experimental design (NYMC-550) CCT-HPDSC-UCBT-PI-001
(PI: MS Cairo, MD). A single-arm study to assess the safety of
transplantation with human placental-derived stem cells combined
with unrelated and related cord blood in subjects with certain
malignant hematologic disease and nonmalignant disorders
(NCT 01586455; PI: MS Cairo, MD). A full color version of this figure
is available at the Bone Marrow Transplantation journal online.
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Figure 5. Central role of NK cells in tumor immunity.50 The diagram shows a hypothetical scheme of the potential role of natural killer (NK)
cells in tumor immune surveillance and in the network of immune cells that respond to tumors. NK cells might initially recognize certain
'stress' or 'danger' signals that are produced by tumors. Both NK cells and cytotoxic T cells (CTLs) are important mediators of antitumor
immunity, as they are ultimately responsible for the destruction of the malignant cells. NK cells can influence the development of adaptive
T- and B-cell immune responses that constitute specific immunity and immunological memory to tumors and pathogens. NK cell lysis of
cancer cells could provide tumor antigens for dendritic cells (DCs), which induce them to mature and present antigen (Ag) to CTLs in lymph
nodes. Cytokines, such as interferon (IFN)-γ, which are produced by activated NK cells, activate CTL and helper T-cell (CD4+) responses. This
leads to the proliferation of helper T cells and cytokine production. Activated NK1.1+ T (NKT) cells can also induce the antitumour activity of
NK cells. Cytokines that are produced by NK cells might also regulate B-cell production of antitumour antibodies (Abs). Reused with
permission from Smyth et al.50
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EX VIVO EXPANSION OF CB-DERIVED NK CELLS
NK cells are large granular lymphocytes characterized by the
expression of CD56 and/or CD16 and lack of expression of CD3.
They are not antigen specific and recognize transformed cells
without prior sensitization. Target cell killing is regulated by the
balance of inhibitory and activating cell membrane receptors that
recognize self and danger signals, respectively, on the surface
of target cells.21 Inhibitory members of the killer cell
immunoglobulin-like (KIR) and NKG2-family receptors recognize
self HLA class I antigens, and activating receptors recognize stress
ligands, viral proteins and antibodies on target cells. NK cell
reconstitution after UCBT precedes T- or B-cell reconstitution by
about 2 months (around day 30 vs day 100),22 and is a critical in
providing compensatory immune function in the face of T-cell
reconstitution, which is further delayed in UCBT compared with
marrow or peripheral blood HSCT.23 In the early post-CBT period,
NK cells preferentially express the inhibitory receptor NKG2A with
reduced KIR expression, indicating that mature NK cells are
present in low proportions.24,25 Although these NK cells have high
proliferative capacity and are functional against tumor cells, they
exhibit higher interferon-γ production and reduced cytotoxic
capacity compared with resting NK cells from healthy controls,
which can be restored following cytokine exposure.24,26,27

The role of NK cells in engraftment following UCBT remains
controversial. Gertow et al.28 have suggested that mixed
chimerism following double UCBT could possibly be related to
NK cell tolerance between the CBU; other reports, however, did
not show a correlation between KIR ligand incompatibility and
engraftment.29,30 Nonetheless, previous studies of hematopoietic
stem cell transplantation in mice demonstrated that IL-2-activated
NK cells mediate hematopoietic stem cell engraftment and that
alloreactive NK cells may facilitate engraftment by killing recipient
T cells and APCs.31–33 As the reduced function and maturation of
NK cells arising in the early post-CBT period can be restored by
cytokines, infusion of ex vivo expanded and activated NK cells
could represent a means to enhance early engraftment
following UCBT.
Ruggeri and colleagues were the first to identify an antitumor

role for NK cells in an HSCT setting in which they demonstrated
that mismatch between donor and recipient HLA—with respect to
their function as KIR ligands—resulted in lower risk of AML
relapse.33 Subsequently, KIR–KIR ligand mismatch has been
correlated with improved outcome and decreased tumor relapse
following allogeneic transplantation for patients with hemato-
logical malignancies.34,35 This is mediated by direct effects on the
tumor and multiple interactions with other immune cells
(Figure 5). The role of NK cell-alloreactivity and leukemia relapse
following UCBT has been controversial;29,36 but early NK cell
reconstitution is associated with improved disease-free survival
and OS,29,37,38 suggesting that augmenting NK cell recovery
following UCBT would also decrease disease relapse and improve
survival.
Purified and activated NK cells for adoptive transfer are easily

manufactured, display high cytotoxic potential and carry a low risk
of toxicity to the recipient. This strategy, however, is limited by the
low numbers of NK cell available within CBU. To overcome these
limitations, many groups have developed techniques for ex vivo
expansion of NK cells adapted to UCB as the starting source
to enable adoptive immunotherapy.39–48 In addition, ex vivo
IL-2-expanded NK cells from CB were shown to be active against
AML blasts and showed anti-leukemia activity in vivo when
infused into mice bearing human AML.49

NK cell-based cancer immunotherapy is an expanding scientific
area of investigation. Further advances in the field will require
increased knowledge of NK cell biology, models that predict
donors or subsets with superior NK cell function, models that
predict tumor susceptibility to NK killing and approaches for

overcoming tumor resistance. Specific approaches under investi-
gation include blocking ligand recognition by inhibitory KIR,
combinations with immunomodulatory drugs and/or targeting
antibody, selection or skewing of the NK cell repertoire,
high-parameter phenotypic analysis of tumor ligands and imaging
techniques to monitor NK cell distribution in vivo for under-
standing migration and homing.50 Further research will be
required to determine whether ex vivo expanded CB NK cells are
effective in enhancing engraftment and preventing disease
relapse. The infusion of NK cells expanded from CBU to augment
immune recovery after HSCT is being investigated in clinical trials
(clinicaltrials.gov NCT01619761 and NCT01823198).

SUMMARY
In summary, multiple approaches are being investigated to
enhance hematopoietic engraftment, accelerate immunological
reconstitution, reduce graft failure and transplant-related
mortality, and increase OS following UCBT in children with
malignant and nonmalignant diseases. Additional approaches
not covered in this review that are under investigation to
accelerate hematopoietic and/or cellular immune reconstitution
following UCBT include ex vivo expansion of UCB with
nicotinamide and the non-altered T-cell fraction, ex vivo enforced
fucosylation with fucosyltransferase IV and guanosine
diphosphate fucose, inhibition of dipeptidyl peptidase (DDP-4)
by sitagliptin, ex vivo expansion with cytokines and StemRegenin 1
and the use of UCB-derived anti-viral CTLs are just a few of the
newer contemporary approaches for ex vivo CB graft engineering
being investigated at the present time.51–56
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